
SHORTER COMMUNICATIONS 

SOME NEW RESULTS FOR ~ON3UGATE~ HEAT T~NSFER 
IN A FLAT PLATE 

R. KARVINEN 
Tampere University of Technology, P.O. Box 527, SF-33101 Tampere 10, Finland 

(Received 18 November 1976 and in ~ev~ed~~~ 18 February 1978) 

NOMENCLATURE 

constant depending on the flow type and 
boundary condition in equations (ik(3); 
heat ~pa~ty~surfa~ of half plate ; 
heat-transfer coefficients for convection ; 
thermal conductivity of the ff uid ; 
thermal conductivity of the plate ; 
thickness of the plate ; 
length of the plate; 
exponents depending on the flow type ; 
Prandtl number ; 
heat Aux density; 
Reynolds number U&v, Re, = U,L/v; 
dummy variable of the plate length 
O<.Y%?.X; 
surface or plate temperature; 
tluid temperature ; 
steady-state plate temperature; 
temperature change during At; 
time ; 
time interval; 
freestream velocity; 
coordinate along the plate; 
subinterval length. 

Greek symbols 

& x exponents de~nding on the flow type and 
boundary condition ; 

V, kinematic viscosity; 
4: internal energy generation/surfao5. 

1. INTRODUCUON 

THE PROBLEMS of the mutual thermal effect of the solid body 
and the fluid flow, i.e. conjugated heat-transfer problems, have 
received some attention during recent years. Because the 
temperature distributions of the fluid and the solid are 
coupled together the arising problems are very complex. For 
a flat plate in forced flow there exist analytical [l-3], 
numerical [4-6] and experimental works [7] and often 
some approximations have been done, for instance a slug flow 
assumption. 

This paper deals with conjugated heat transfer in a flat 
plate. An approximate method is presented for calculating 
heat transfer from a flat plate in forced flow. The results are 
compared with experimental data and previous results ob- 
tained in [4] for the case of combined convective heat 
exchange with the environment, conduction in the plate and 
internal heat sources. 

2. CONVEY HEAT TRANSFER 

FOR PRFSCRHfED SURFACE TEMPERATURE AND 

HEAT-FLUX DISTRIBUTIONS 

If the surface temperature of a plate in Fig. 1 is known (solid 
line), the greatest interest lies in the heat flux density 
corresponding to that temperature. For arbitrary surface 

FIG. 1. Thermal model of a flat plate and surface temperature 
distribution approximated by a series of straight lines. 

temperature the beat ffux density can be expressed very well 
for Pr 5 1 as (see e.g [8]) 

q(x) = C(k,r)Re’“Wj~[l -(;y-j-‘dT(s). (I) 

The constants C, tn, n, y and @ are given for laminar and 
turbulent flows in Fig. 2. Another problem is presented when 
the heat flux distribution is given. Then we are interested in 
the corresponding surface temperature, which can be found 
[4,8] from 

Equation (2) results from the solution of a Voherra integral 
equation composed of equation (1). Instead of equation (2) 
also a simpler expression can be obtained by applying directly 
the energy integral equation to the problem of the step in heat 
flux [6] 

The differences between the results obtained using approxi- 
mate expressions (2) and (3) are according to [4] very small. 

3. HEAT TRANSFER FROM A FLAT PLATE 

1N TfUZ CASE OF COMBINED CONDUCIPO~ 

AND CON\iECfION 

Consider a thin plate of finite length in a fluid Row with 
uniform internal generation of theimal energy in Fig. 1. 
Externally heat is transferred to a fluid by convection and 
there can also be conduction along the plate. If conduction is 
taken to be one-dimensional then the temperature distri- 
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Flow type Thermal c 
, condition 

U___t-P- 
~_ __i_-_- 

/ temperature 0.332 

II<;. 2. Constants in equations (1 I (3) for various Row situations and boundary conditions 

bution of the plate is governed by integro-differential [4] 
resulting from equation (2) 

Instead of solving equation (4), the temperature of the plate 
can be found using a simple method developed by the author 
in [9]. As a first step let us assume that the temperature 
distribution of the plate is the one presented by a solid line in 
Fig. 1. The corresponding convective heat flux is obtained 
from equation (1) and integration is easy if the true tempera- 
ture is approximated by a series of dotted straight lines in Fig. 
1. After integration we get 

q(x) = C(k!‘z)RFPr 7, +k, i 

wherek,=(7;-T;~,):(~~-.\~ ,)and 

(6) 

When both the temperature 7; and the heat flux q, are known 
at the point s,, it is possible to calculate the heat-transfer 
coefficient caused by convection 

h,., = C/$( r, ‘- T, ). (7) 

The combined action of convection and conduction can be 
considered after calculating the heat-transfer coefficient. 
Assuming one-dimensional conduction and taking the length 
of every subinterval as Au, the finite-difference equation for 
the temperature of the point si can be written as 

The temperature of the plate is thus governed by the system of 
linear equations expressed in matrix notation as 

A 7‘ = h. (9) 

If the initial guess of the temperature is correct. the solution of 
equation (9) does not dilIer from it: if not, the solution is 
substituted in equation (5) and a new temperature profile is 
calculated and so on. 

The problem of Fig. 1 can also be approached by employ- 
ing the heat flux distribution as a starting point and using 
either equation (2) or (3). Because both expressions have a 
similar level of accuracy, equation (3) is used. If heat flux 
distribution is first guessed and then approximated by 
straight lines as is the temperature in Fig. 1, the expression for 
the local plate temperature is obtained from equation (3). 
which gives 

where k, = ty, - y,_ , )i(.s, -5,. / ). I Ising the known tempera- 
tures and heat fluxes, the heat-transfer coefficient can be 
calculated and coupled temperature distribution is obtained 
again by solving the system of equations (9). After calculating 
the temperature the corrected heat flux is obtained from 

Substituting the heat fluxes ofequation (I I) in equation (101, 
the new temperature distribution is obtained and so on. 

In [9] also heat exchange to a large constant temperature 
environment by radiation is included. It has been found that 
the results are the same using both the temperature and heat 
flux as a starting point. Also it has been observed that results 
agree with [4] when heat is transferred only by convection 
and radiation. But as to conduction there is a great difference 
between the results in [4] and [9], where also experimental 
temperature distributions along the plate have been pre- 
sented. 

Figure 3 presents calculated and measured plate tempera- 
ture distributions for a copper plate with a length of03 m and 
thickness 0.3mm in absence of radiation. The plate was 
placed in the free exhaust jet of a wind tunnel. A uniformly 
distributed heat generation was achieved by means of an 
electric current. The temperature distribution of the plate was 
obtained by using an infrared radiation camera. In the 
infrared radiation unit used, linescanning was possible and 
the radiation of one line could be displayed on an oscillo-. 
scope. Also transient cases could be easily measured. In order 
to measure the radiation, the plate surface, e.g. a reflecting 
aluminium surface, must be painted. If the purpose is to 
investigate the combined effect of only convection and 
conduction, only thin lines are painted in a transverse 
direction to the flow. The probable error in the surface 
temperature is estimated to be & 0.4 K. Further details can be 
found in [9]. 

The results in Fig. 3 are very surprising near the leading 
edge, because the plate temperature differs greatly from that 
of the freestream and also from the results of [4], where 
always the leading edge has a freestream temperature. The 
calculated results in Fig. 3 have been obtained by assuming 
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FIG. 3. Effect of conduction on the plate temperature. 
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FIG. 4. Temperature response for a plate to a step change in heat flux. Laminar flow [9]. 

the edges of the plate insulated, and the first calculated point 
has been positioned at the beginning of the solid line. 

4. TRANSIENT CASE 

As an application of the previously presented method to 
transient case the temperature response of the plate subjected 
to a uniform step change in wall heat flux and cooled by 
convection is considered. Let us assume that the temperature 
distribution of the plate is known at a given instant (t). Then 
equation (5) gives the corresponding heat flux, and the heat- 
transfer coefficient can be calculated. For a small time 
increment the problem is treated as quasistatic assuming a 
constant heat-transfer coefficient. The temperature change 
AT at the point s, during a small time increment At is 
obtained from 

ATj=[Tj-T,-$“/hcj]exp 
i > 

-% t@‘/h,. 

Using result (12) the temperature at the point sj at instant t 

+ At is obtained and so on. 
Figure 4 presents the plate temperature for a uniform step 

change in heat flux, when the initial temperature is the same 
as that of freestream and heat is transferred only by con- 
vection. We notice that the result for a laminar boundary 
layer can be presented by a single line. Also the experimental 
data for air, obtained by using an aluminium foil, 0.019 mm 
thick and stainless steel, OSmm thick, are in agreement. 
Owing to the small values ofemissivities in the plates and the 
used velocities, the corrections necessitated by radiation in 
experimental data were very small [9]. 
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I\IoMEYCLAI‘UKE 

= IL, dimensionless wave number; 
acceleration of gravity : 
heat-transfer coefficients; 
= h,L/k, Biot number, j = 1,2; 
thermal conductivity of fluid : 
thickness of the fluid layer : 
Prandtl number ; 
temperature : 

T,,,, L mean temperatures of the lower and upper 
surface, respectively ; 

Tx>,. L temperatures f the outside environments: 

c time ; 
W’. velocity component in the --direction : 
2% coordinate normal to the walls. 

Greek symbols 

r, v, thermal diffusivity and kinematic viscosity : 
8’> dimensionless rest-state temperature gradient : 

II, = z/L, dimensionless coordinat ; 
6, angle measured from horizontal; 
^I i. coefficient of thermal expansion. 

Superscripts 
I ^ . . refer to disturbance quantities. 

FOR AN infinite horizontal layer offluid confined between two 
isothermal plates with lower plate hotter than the upper one, 
the transition takes place at a critical Rayleigh number 1708 
[l-6]. There are numerous other factors that affect the 
initiation of convective flow patterns in the fluid [7-l 51. In all 
of these and other investigations the boundaries confining the 
fluid are assumed at prescribed temperatures. Only in 116,171 
the problem of stability is considered for a horizontal layer 
only with one of the surfaces subjected to convective boun- 
dary condition and by neglecting the heat capacity of the 
walls. The purpose of this study is to investigate the stability 
of fluid confined between two inclined parallel layers sub- 
jected to general convective boundary conditions at both 
surfaces. 

ANALYSIS 

Consider a layer of fluid between two parallel plates 
subjected to a negative temperature gradient in the direction 
perpendicular to the plates (i.e. z-direction). Fluid is incom- 
pressible, Newtonian. the physical properties are constant 
except for the density whrch appears in the body force (i.e. 

Boussinesq approximation) and that the wall admrttancc i> 
negligible. We restrict our analysis to the r-ange of inclinations 
such that the stability in the conduction regime with longitu- 
dinal disturbances will be dominant (i.e. (i 4 75 for PC I 0.7) 
[6. 151. 

The disturbance equations for the type of stability problem 
considered here are well known [ 15. I X] : they are written as 

tla) 

Subject to the boundary condition, 

where for horizontal layer 

while p/Z\: = 0 for inclined layer: 
and MI’ and T’ are the disturbance quantities for velocity 
normal to the walls and the temperature d7’/dr is the constant 
negative temperature gradient, The disturbance quantities u 
and T’ are written as 

F’(x,p,z.t) = F(-)exp[i(k,stkz).)+ 11: 1. 

F 5 M’ or T. 

where 

(k;+k;)’ ’ z I == the wave number 

and p% m general. is a complex number. and k, = 0 for- mchned 
layer. 

Then the solution (3) is introduced into the system 01 
equations (1) and (2); the resulting expressions in the 
dimensionless form are given as 


